Fundamentals of Problem Solving and Programming Using C

A Brief History of C Language

The C programming language was developed by Dennis Ritchie at Bell Laboratories in 1972. It was named C because it is a successor to a language called B that was developed in 1970 by Ken Thompson on a DEC PDP-7 computer. The B language was however restricted and C was created to augment B’s power. In 1978 the first book on C, entitled, The C Programming Language (Prentice-Hall, 1978) was written by Dennis Ritchie and Brian Kernighan. With the introduction of the IBM-PC in 1981, the C language became a popular programming language on microcomputers.

The growing popularity of C language led to the creation and development of a number of C implementations. Programmers began to bring out their own version of C and the language was now in danger of splintering into different and possibly incompatible versions. In the summer of 1983, the American National Standards Institute (ANSI) formed a committee named X3JII to create a standard for C language and rectify the discrepancies resulting from many different implementations. The ANSI C Standard was finally adopted in 1990.

In the early 1980s, C programming language was further developed and these developments served as an extension to the language. C++ was developed by Bjarne Stroustrup while working at Bell Laboratories. It was originally called “C with classes,” however the name was changed to C++ in 1983. C++ was written to be used when C program and codes got too long and therefore was difficult to manage and control. The concept of objects came to be used in the language. This concept of object-oriented programming became an important feature of C++.

Programming languages are categorized as either High-Level, Middle-Level, or Low Level languages. High-Level languages have instructions that are English-like, and can easily be learned and understood. Also, most high-level language have been standardized, therefore programs developed using this type of languages are quite portable. Low-Level languages, on the other hand, are languages that resemble or are close to the natural language of the computer (machine language). Low-level language are machine dependent, as a result programs written in low-level languages are not portable. Also, the programming instructions and code are written in mnemonics, which are quite cryptic compared to high-level languages.

The C programming language is considered to be a middle-level language. It does not mean, however that that it is harder to use than high-level languages or has the problems associated with low-level languages. C language combines the good features of these language categories. It has the functionalism of low-level language such as assembly code since it allows the manipulation of bits, bytes, words, and pointers. It is therefore suited for system-level programming where these operations are common. Also, C has the portability feature of high-level language and embody the use of data types.

The Structure of a C program

Now that we have a background on how C was developed, let us now study how C programs are written. Below is a general form of a C program. Note that all C programs follow this format.

Preprocessor directive

Global declarations

Main()

{

local variables;

statement_1;

 .

 .

statement_n;

}

In order for us to better understand how a C program is written , here is an example:

Listing 1.1

Since this is our first working program in C, lets go over the program line by line.

#include<stdio.h>

The #include instruction is a special instruction called a preprocessor directive. It is also referred to as header files. This instruction tells the computer to include the file (usually files with a .h extension) enclosed in triangular brackets (< >). In our program the file stdio.h is placed in our program. The reason why we want to include stdio.h in out program is that, it contains in it the printf()function. There are other functions in this file but the compiler ignores them since it would need only to know the information about the printf() function.

/* this code prints “Hello World” on the screen */

The statement above which follows the preprocessor directive is actually a comment. In C comments are written starting with the /* symbol and ending with the */ symbol. The compiler during compilation of the code ignores the groups of characters written between these two symbols. They serve as explanations that may be important when documenting your code in C. In he case of our simple program, it simply describes what the program performs during run-time.

main()

The next line – main()is actually a function and it is considered to be the simplest function in C when written as main() { }. The main function represents where the program starts and every statement in C that performs something must be found inside body of the main function. The body of a function is enclosed in curly braces and is commonly referred to as a block. In our example the statements printf(“Hello World”); and return(0); make up the body or block of our main function.

{

printf(“Hello World”);

return(0);

}

Let us now try to examine the statements found inside the main function. The first statement is:

printf(“Hello World”);

Notice that statements in C are always terminated by the (;) statement terminator symbol. This symbol simply tells the compiler that the statement is complete.

The printf() function is typical and commonly used function in C that displays data to the screen. Placing the data between the parenthesis is a typical way of passing values to a function in C. We call the data passed to a function as arguments and in our example printf() is given only one argument which is the string “Hello World”. However, functions such as printf() is not limited to having only a single argument passed to it, we will see later in our discussion that this function can take many other forms of arguments.

The final line in our example is the return(0); statement. Obviously, when this statement is performed it returns a value of 0 to main()when no error was encountered during the execution of the entire program. The value of 1 is returned otherwise. We will take a closer look at the return () function later when we discuss the details of functions in C.

Origins of C

ANSI C

Developments in C

C as a Middle-Level programming language

	#include<stdio.h>

	/* this code prints “Hello World” on the screen */

	main()

	{

		printf(“Hello World”);

		return(0);

	}

PAGE
1
Roelmr/prog1/notes2

