Fundamentals of Problem Solving and Programming Using C

Hardware component of the computer

The hardware is the physical component of a computer. It is basically composed of the following components:

1. Main memory

2. Central Processing Unit (CPU)

3. Input/Output devices (I/O)

4. Secondary Storage Devices

Main Memory

It is the unit of the computer system where data and computer instructions or programs are stored. The concept that involves the storage of both data and program into memory is called the stored-program concept.

Each location in the computer’s main memory can be identified by a unique address. Using this address information the computer’s CPU can readily access data or program instruction necessary for it to perform the appropriate task or course of action.

Central Processing Unit (CPU)

The CPU or the Central processing Unit is usually referred to as the “brains” of the computer. All operations of the computer is controlled or supervised by the CPU. The components of the CPU include:

a. CONTROL UNIT

The control unit supervises or monitors the function or activities performed by the computer in relation to the conditions set by the program in the memory.

b. ARITHMETIC-LOGIC UNIT (ALU)

This component of the CPU is responsible for managing the performing all mathematical and logical operations.

Input/Output devices

These are devices that allow the user to interact with the computer system. It therefore provides users with a means to enter data required for a particular task and for the computer to display or transmit to the user the results of the computations or task. The most common example of an input device is the keyboard. The keyboard is used as a means by which users can enter text, commands, and special instructions to the computer. On the other hand, the computer’s monitor is the most common and visible output device. The results of computer operations are often displayed to the monitor allowing the users to have an immediate view of these results.

Secondary storage devices

The main memory is power dependent such that when power is turned-off, the data or any other items stored in the main memory are lost. Secondary storage devices are used to remedy this problem related to the main memory. These devices use a non-volatile medium on which data or information can be stored without the worry of losing them in case power is turned off. Also, with the use of secondary storage devices, data and other information stored in it can be retrieved when the use or need for them arises. Examples of secondary storage devices include diskettes, CD-ROMs, Hard disk drives, and magnetic tape.

Using computers to solve problems

In most cases computers are used to perform a particular action required by the user. However, since computers are only electronic devices they do not have the ability to think and make decisions on their own. It is therefore necessary that we provide a valid set of instruction or program for the computer to perform a desired task. In programming (i.e. developing or writing programs), we are more involved in the process of problem solving than simply providing an instruction set for the computer. Problem solving can be defined as the trans formation of the problem description into a solution by analyzing the problem domain
and employing the appropriate problem-solving strategies, tools and, techniques.

Prior to writing a program to solve a problem, we must be able to analyze all aspects of the problem and then develop a systematic and organized solution. These step-by-step solutions can now be transformed into the appropriate program that addresses the problem. This approach in programming and problem-solving using computers is referred to as the Software Development Method.

The Software Development Method

1. Requirement Specification

To be able to solve a problem we must be knowledgeable of what is required of the problem. Also, we need an exact or precise understanding of the problem, which includes the constraints and special conditions that is part of the problem domain and the things that the solution should provide.

2. Analysis

With the analysis phase, we focus on the necessary data or inputs require by the problem and the desired outputs after a particular solution is in place. We must also determine the appropriate formula or computational expression to be used in the solution and what data or information is to be displayed or outputted to the user.

3. Design

In programming, since we are to develop a set of instruction the design phase is the “stepping stone” in finally creating a working program. To do this we develop a list of steps called an algorithm to solve the problem. This algorithm can later be transformed into the corresponding program code when it is established and verified to have solved the problem as required.

4. Implementation

In the implementation phase, we simply transform the algorithm into the program code using a programming language. Each step in the algorithm is converted into the appropriate statement of the programming language.

5. Verification and Testing

When the algorithm has been completely transformed into its equivalent program code then we must test or in programming term run the program and check whether the program conforms to the requirements of the problem solution.

6. Documentation

In documentation, we must be able to provide all the information that led us to the solution of the problem. In doing so we, should be able to provide information on the requirements specifications, data for the input, computations and other processes, desired output, algorithms and other program design specifications, and finally the program code itself. This is important to software design, since it allows future developments on the program and it can serve as a guide when explaining how the program is to be used.

 Programming Languages

In writing instructions or programs for the computer to execute, it is important that we make use of a specific programming language. A Programming language is an artificial and formal language that has a limited vocabulary consisting of a set of keywords or reserved words that constitute valid instructions. The manner of writing these keywords is governed by rules and guidelines.

In general, programming languages can be categorized into three: Machine language, Assembly language, and High-level languages.

Machine Language

This language is the natural language of the computer. Programs that are written using this language does not need any transformation or translation since it can be directly executed by the computer.

Characteristics:

a. Instructions written in this language are usually coded using 1s and 0s. This means that the program is in their binary form.

b. Since programs are in binary form, even the simplest program tends to be very complex and long.

c. Different computers have their own set of machine instruction, therefore programs written in one type of computer using this language cannot be transferred to other types of computer. Programs in machine code are therefore machine-dependent.

Assembly Language

The assembly language was developed to make programming much easier than coding in machine language. Its instruction set or keywords are composed of English-like abbreviations called mnemonics. With the use of this mnemonics, programs are easier to write and understand compared to machine language. However since it does not conform to the natural language of the computer programs written in assembly need to be translated to machine code using software called assemblers.

Characteristics:

a. Although mnemonics is used to write programs in assembly, they usually correspond to a single instruction in machine language, therefore programs in assembly tend to be lengthy.

b. Assembly programs are not portable, that is programs written in one type of computer will not execute when placed in a different type of computer.

High-Level language

This programming language have instructions that are English-like or are closely resembling that of the English grammar. A single instruction may correspond to many operations or instructions in machine or assembly language and therefore programs written in this language are more concise. Also, because of its English-like construct, it is easier to learn the instructions and understand a program. However, for high-level programs to execute there is a need to transform or compile the instructions into their machine code equivalent. Compilers are then used to translate the programs into an almost executable code.

PAGE
1
Roelmr/prog1/notes1

