Data Structure-POINTERS

Pointers

C extensively makes use of pointers, since most C programs require the allocation of memory (dynamic allocation), manipulation of memory address information, pass address information to functions, and to support certain data structures such as linked list. Moreover, the use of pointers can improve the performance and efficiency of some routines or modules.

A pointer is an address location and to be able to use them, we need to declare a pointer variable that will hold the value of the address. To declare a pointer variable we have the general form:

type *pointer_name;

Pointer variables must be associated with the data types int, char, or double. Note, that the pointer_name must be prefixed with the indirection operator (*) indicating that we are declaring a pointer variable and not a regular declaration of a variable.

To declare a pointer variable, we can write:

int *my_pointer;

The declaration above can be read as “my_pointer is a pointer to type int (integer).”

Pointer Operators

There are two unary pointer operators the & and the * operators. The & operator, also called “the address of” operator, places the address of a variable into a pointer variable. Consider this example:

int x, r, *pointer_to_r;

r = 100;

pointer_to_r = &r;

In this code fragment, the value 100 is assigned to the variable r and therefore the value is placed into the memory location of r. The next line of code places or assigns the memory address of the variable r into the pointer variable pointer_to_r and it has nothing to do with the value 100 assigned to r. We can read the last line of code as “pointer_to_r receives the address of r.”

Assuming that the variable r uses the memory address 3110, and that any value assigned to r is placed into this address location. We can therefore say that the value 100, that we assigned previously to r, is located at address 3110. To access the value of variable r using its address information, we can use the * or the “at address” operator. The following statement places the value 100 into x.

x = *pointer_to_r;

The statement above can be read as “x receives the value at the address pointer_to_r.” Listing 4.8 is the complete C program used in the discussion.

Listing 4.9

#include<stdio.h>

#include<conio.h>

main()

{

int x, r, *pointer_to_r;

r = 100;

pointer_to_r = &r;

x = *pointer_to_r;

printf(“r = %d\n”, r);

printf(“address of r is %d\n”, pointer_to_r);

printf(“x = %d\n”, x);

getch();

return(0);

}

In the program presented, the variables r and x will have the same value of 100 and that the address value of r is also displayed.

Pointer variables can also be assigned a value from another pointer of the same type. Here’s an example:

Listing 4.10

#include<stdio.h>

#include<conio.h>

main()

{

int r, *pointer_to_r, *pointer_to_r2;

r = 10;

pointer_to_r = &r;

pointer_to_r2 = pointer_to_r;

printf(“r = %d\n”, r);

printf(“address of r is %d\n”, pointer_to_r);

printf(“the value of pointer_to_r2 is = %d\n”, pointer_to_r2);

getch();

return(0);

}

Since, we have assigned to pointer_to_r the address value of r then assigning the address value of pointer_to_r to pointer_to_r2 places the address of r also in pointer_to_r2.

Arithmetic operations and Comparison of pointers

The addition, subtraction, increment, and decrement operations are the only arithmetic operations that can be performed on pointers (pointer variables).

With the increment and decrement operations, pointer values are increased or decreased in relation to the size (in bytes) of the data type they point to. This means that if you declare a pointer x of type int (integer) then incrementing x (i.e x++) would increase the value of x by two (2), since the size of an int or integer is two bytes. The size of a character (char) type is one (1) byte, hence incrementing a pointer of type char increments its value by 1.

Consider this example:

Listing 4.11

#include<stdio.h>

#include<conio.h>

main()

{

int x, r[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

int *pointer_to_r;

pointer_to_r = &r;

x = *pointer_to_r;

printf(“x = %d\n”, x);

printf(“the value of pointer_to_r is = %d\n”, pointer_to_r);

pointer_to_r++; /*increment the pointer */

x = *pointer_to_r;

printf(“x = %d\n”, x);

printf(“the value of pointer_to_r is = %d\n”, pointer_to_r);

getch();

return(0);

}

In the example, we have declared and initialized an integer array r with the values 1 to 10 for the elements. Note that in the line:

pointer_to_r = &r;
we place the memory address of the array r to the pointer pointer_to_r (in fact, the memory address of the first element of the array r). To illustrate, we have the figure below:

With, the expression x = *pointer_to_r we are assigning the value pointed to by pointer_to_r to x. Displaying the value of x in the statement

printf(“x = %d\n”, x);

will yield the value of 1. However, in the second printf() we are not displaying the value in the element but the memory address value of the array element.

Incrementing the pointer, such as in the line:

pointer_to_r++;
increases the value of pointer_to_r by 2 (note that pointer_to_r is of type int and integers are two bytes long). If we assume that the address value of pointer_to_r is 1000, then after the execution of the expression above pointer_to_r will now have an address value of 1002. In the case of the program code presented incrementing pointer_to_r simply places or moves the pointer to the next integer element in the array. Again, the figure below illustrates the concept.

Addition and subtraction operations can also be performed on pointers. In the expression:

pointer_to_r = pointer_to_r + 4;

pointer_to_r is assigned an address value that corresponding to the fourth element beyond the current position of the pointer pointer_to_r. Example, we have the array r as shown in the figure below

After executing the statement pointer_to_r = pointer_to_r + 4, pointer_to_r now move to the array element indexed by 4 or r[4]. The figure below represents the array with the new pointer position.

Since pointers contain memory address information or values, we can therefore make comparisons between pointer values to check whether the pointers are referencing the same data in memory. Consider this simple example:

Listing 4.12

#include<stdio.h>

#include<conio.h>

main()

{

int r[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

int r2[10] = {11, 12, 13, 14, 15, 16, 17, 18, 19, 20};

int *pointer_to_r, *pointer_to_r2;

pointer_to_r = &r;

pointer_to_r2 = &r2;

if (pointer_to_r < pointer_to_r2)

 printf(“pointer_to_r points to lower memory”);

else

 printf(“pointer_to_r points to higher memory”);

getch();

return(0);

}

In the program, pointer_to_r and pointer_to_r2 are pointers to two different integer arrays. Since we said earlier that declaring arrays would allow the compiler to allocate memory space for the array, therefore the two arrays - r and r2 are assigned different memory space locations. This would make the assigned memory address value to pointer_to_r and pointer_to_r2 different from each other.

index

[6]

[7]

[9]

[8]

[5]

[1]

[4]

[3]

[0]

[2]

int r

10

9

8

7

6

5

4

3

2

1

pointer_to_r

[9]

[7]

[8]

[5]

[1]

[2]

[4]

[3]

[0]

[6]

10

int r

9

8

7

6

5

4

3

2

1

index

pointer_to_r

[6]

[7]

[9]

[8]

[5]

[1]

[2]

[4]

[3]

[0]

index

int r

10

9

8

7

6

5

4

3

2

1

pointer_to_r

(current position)

index

[7]

[9]

[8]

[5]

[1]

[2]

[4]

[3]

[0]

[6]

10

9

8

7

6

5

4

3

2

1

int r

pointer_to_r

(new position)

PAGE
1
roelmr/files/c

