[image: image1.png](nuel < nue2) €& (nwwed >= nuwd)

SN

1 (true) sg O (false)

0 (false)

C programming review

The Structure of a C program

Now that we have a background on how C was developed, let us now study how C programs are written. Below is a general form of a C program. Note that all C programs follow this format.

[image: image2.png]* = (nwel <= nwez) || (nwed < nwed) s

NS

1 (true) I 1 (erue)

~_

x = 1 (truej

Preprocessor directive

Global declarations

Main()

{

local variables;

statement_1;

 .

 .

statement_n;

}

In order for us to better understand how a C program is written , here is an example:

Listing 1.1

[image: image3.png]MLY“/‘M) €€ (num3 > numd))) || (numd > numd);
0 (false) §€ 0 (false) 1 (erue)

\/

0 (false)

Since this is our first working program in C, lets go over the program line by line.

#include<stdio.h>

The #include instruction is a special instruction called a preprocessor directive. It is also referred to as header files. This instruction tells the computer to include the file (usually files with a .h extension) enclosed in triangular brackets (< >). In our program the file stdio.h is placed in our program. The reason why we want to include stdio.h in out program is that, it contains in it the printf()function. There are other functions in this file but the compiler ignores them since it would need only to know the information about the printf() function.

/* this code prints “Hello World” on the screen */

The statement above which follows the preprocessor directive is actually a comment. In C comments are written starting with the /* symbol and ending with the */ symbol. The compiler during compilation of the code ignores the groups of characters written between these two symbols. They serve as explanations that may be important when documenting your code in C. In he case of our simple program, it simply describes what the program performs during run-time.

main()

The next line – main()is actually a function and it is considered to be the simplest function in C when written as main() { }. The main function represents where the program starts and every statement in C that performs something must be found inside body of the main function. The body of a function is enclosed in curly braces and is commonly referred to as a block. In our example the statements printf(“Hello World”); and return(0); make up the body or block of our main function.

{

printf(“Hello World”);

return(0);

}

Let us now try to examine the statements found inside the main function. The first statement is:

printf(“Hello World”);

Notice that statements in C are always terminated by the (;) statement terminator symbol. This symbol simply tells the compiler that the statement is complete.

The printf() function is typical and commonly used function in C that displays data to the screen. Placing the data between the parenthesis is a typical way of passing values to a function in C. We call the data passed to a function as arguments and in our example printf() is given only one argument which is the string “Hello World”. However, functions such as printf() is not limited to having only a single argument passed to it, we will see later in our discussion that this function can take many other forms of arguments.

The final line in our example is the return(0); statement. Obviously, when this statement is performed it returns a value of 0 to main()when no error was encountered during the execution of the entire program. The value of 1 is returned otherwise. We will take a closer look at the return () function later when we discuss the details of functions in C.

Identifiers

Identifiers are user-defined words (words given or created by the user) that are used to reference program entities such as variables, functions, labels, and other program objects. They must be unique and must follow the following rules for constructing such.

Rules in constructing identifiers

1. Identifiers may consist of alphanumeric characters and the underscore (_) symbol.

Example:
(legal)

(illegal)

Count

&count

Sum

#num

result

@drp

my_counter_1

gad\d

counter1

sum/1

2. The first character must be a letter or an underscore.

3. Limit identifiers to 32 characters in length.

4. There can be no embedded blanks
Example:
(legal)

(illegal)

Count1

Count 1

5. Reserved words cannot be used as identifiers.

6. Identifiers are case sensitive. Therefore the identifier sum is different from Sum, both are valid but unique or distinct.

Data Types in C

C language supports the concept of data types. A data type is defined as a set of data values that a variable can store and the set of operations on these values. There are in fact five (5) fundamental data types supported in C char, int float, double, void. Their size and range are as follows:

	[image: image4.png](nuel < nue2) €& (nwwed >= nuwd)

SN

1 (true) sg O (false)

0 (false)

Type
	Bit Width
	Range

	char
	8
	0 to 255

	int
	16
	-32768 to 32767

	float
	32
	3.4E-38 to 3.4E+38

	double
	64
	1.7E-308 to 1.7E+308

	void
	0
	Valueless

Type Modifiers

Modifiers are used to alter the meaning of the fundamental data types and extend the data handling capability of C. These modifiers are as follows:

signed

unsigned

long

short

With the exemption of the void data type these modifiers are prefixed to the data types when used in variable declarations. Table 2 presents the list of the possible combinations of modifiers and data types.

	[image: image5.png]* = (nwel <= nwez) || (nwed < nwed) s

NS

1 (true) I 1 (erue)

~_

x = 1 (truej

Declaration
	Bit Width
	Range

	char
	8
	-128 to 127

	unsigned char
	8
	0 to 255

	signed char
	8
	-128 to 127

	int
	16
	-32768 to 32767

	unsigned int
	16
	0 to 65535

	signed int
	16
	-32768 to 32767

	short int
	16
	-32768 to 32767

	unsigned short int
	16
	0 to 65535

	signed short int
	16
	-32768 to 32767

	long int
	32
	-2147483648 to 2147483647

	unsigned long int
	32
	0 to 4294967295

	signed long int
	32
	-2147483648 to 2147483647

	float
	32
	3.5E-38 to 3.4E+38

	double
	64
	1.7E-308 to 1.7E+308

	long double
	64
	3.4E-4932 to 1.1E+4932

To further illustrate our discussion lets have another example.

Listing 1.2
[image: image6.png]MLY“/‘M) €€ (num3 > numd))) || (numd > numd);
0 (false) §€ 0 (false) 1 (erue)

\/

0 (false)

#include <stdio.h>

#include <conio.h>

main()

{

int x;

/* variable declaration */

x=5;

/* assign 5 to x */

clrscr();

printf("The number assigned to x is %d\n", x);

return(0);

}

In Listing 1.2 we declared a variable x of type int (note of the location of the variable declaration in the main() function) and assigned a value of 5 to x. In C all variables are to be declared prior to use. The form of a variable declaration is:

Type variable_list;

The clrscr() function simply clears the screen so that we can have a clear view of the output of our program. The next statement after the clear screen is the printf() function, however note that there are new items/object that added, the %d\n and the variable x. The %d symbol simply tells the printf() function to display an integer and that the value will be taken from x (note again that 5 was assigned to x). On the other hand, the \n symbol will move the cursor to a new line (next line) on the screen after printing the value of x. We will learn more about these symbols later.

When you run the program it should have the following output:

The number assigned to x is 5
Let’s see the next example:

Listing 1.3

#include <stdio.h>

#include <conio.h>

main()

{

int a,b;

/* variable declarations */

float c;

/* another variable declared */

a=5;

/* assign 5 to a */

b=6;

/* assign 6 to b */

c=1.5;

/* assign 1.5 to c */

clrscr();

/* clear the screen */

printf("%d is less than %d\n", a,b);

printf(“The number %f is a float\n”, c);

return(0);

}

The next example (listing 1.3) is quite similar to the first example, however not how the variable declaration in the main() function is written.

int a,b;

float c;
In the first line we are actually declaring two variables a and b both of type int. This manner of declaring variables in C is done by separating each of the identifiers with a comma. The next line is another variable declaration of type float for the identifier C. The succeeding lines of code are actually assigning values to the variables. Another important aspect of this code is how the values are outputted or are printed to the screen. Lets try to look at the printf() statements.

printf("%d is less than %d\n", a,b);

The first printf() statement displays the value of a and b. You will notice that there are %d symbols that would correspond to the two variables. The first %d takes on the value of a, which is 5 and the second one takes on b which is 6. The \n symbol means newline and takes the cursor to the next line on the screen after displaying what is in the first printf(). The output would be:

5 is less than 6

The second printf() is:

printf(“The number %f is a float\n”, c);
In this statement the %f symbol takes on the value of c which we have declared as a float. When this statement is executed, the output would be:

The number 1.5 is a float

Input and Output in C

printf() Format specifications

In the course of our discussions we would often need to display values assigned to variables. In doing so, the printf() function is provided with format specifiers to handle the data needed to be outputted. So far we have already encountered %d and %f in the previous listings. Table 3 is a list of other format specifiers.

	Specifier
	Meaning

	%c
	Character

	%d
	Decimal Integer

	%I
	Integer (same as %d)

	%e
	Scientific notation (e.g. 3.4e-3)

	%E
	Scientific notation (e.g. 3.4E-3)

	%f
	Floating point

	%g
	Scientific notation or floating point

	%G
	Scientific notation or floating point

	%n
	Argument is an integer pointer; number of characters printed so far is place in that integer

	%o
	Octal

	%p
	Prints a pointer

	%s
	Character string

	%u
	Unsigned integer

	%x
	Hexadecimal, lowercase letters (e.g. 2a4c)

	%X
	Hexadecimal, uppercase letters (e.g. 2A4C)

	%%
	Percent sign

scanf() function

The scanf() function is the reverse function of the printf() function since it serves as the major or primary keyboard-input of C. Although, it is the reverse you use the scanf() function quite similar to the printf(). To illustrate the use of scanf(), consider this example.

Listing 1.4

#include<stdio.h>

#include<conio.h>

main()

{

char my_input;

printf(“Enter a character : ”);

scanf(“%c”, &my_input);

printf(“\nYou entered %c ”, my_input);

getch();

return(0);

}

In the above code, we have declared a variable my_input of type char. The next line of code simple prints the string “Enter a character : ” to the screen to let the user know what the program needs. The code following the printf() function is:

scanf(“%c”, &my_input);
Notice that the format specifier (%c) was also used in the function. This lets C know what kind of input is expected from the keyboard. In the case of the above statement, scanf() is expecting a single character. Also, the input is stored in the variable that follows the format specifier. In our code, that variable is my_input, however you might have noticed the ampersand (&) symbol that precedes the variable. This simply means that the value entered is to be stored at the address of my_input in memory.

To output the variable we have just entered, we again use the printf() function.

printf(“\nYou entered %c ”, my_input);
Similar to our previous discussions the %c takes its value from my_input.

Constants and Operators

Constants are fixed values that may not be changed or altered in a C program. C programs allow constant declarations that belong to the fundamental data types except for the void data type. In addition to these data types, C also supports string constants (string literal). A string constant is enclosed between double quotes such as “Hello World”, on the other hand character constants are enclosed between single quotes such as ‘a’.

Backslash Character Constants

C provides equivalent codes to handle keyboard strokes/keys that are beyond the scope of the English alphabet such as the tab key and carriage return. They are used exactly the same way as any character constant. A list of the backslash codes is shown in Table 4.

	Code
	Meaning

	\b
	Backspace

	\f
	Form feed

	\n
	Newline

	\r
	Carriage return

	\t
	Horizontal Tab

	\”
	Double quote

	\’
	Single quote

	\0
	Null

	\\
	Backslash

	\v
	Vertical Tab

	\a
	Alert

	\o
	Octal constant

	\x
	Hexadecimal constant

Operators

Operators are symbols that tell the compiler to perform a certain mathematical or logical manipulation on data. These data are assigned to variables and these variables become the operands to the operator. C has three types of operators: Arithmetic, Relational and Logical, and Bitwise.

Arithmetic Operators

Arithmetic operators are common to most programming languages. They include the basic operations on addition, multiplication, subtraction, and division. These operators allow users to perform calculations and mathematical computations on the data types. Table 5 shows the list of arithmetic operators allowed in C.

	Operator
	Meaning/Action

	-
	Subtraction

	+
	Addition

	*
	Multiplication

	/
	Division

	%
	Modulus division

	--
	Decrement

	++
	Increment

To help us understand how these operators are implemented lets us consider the code listing below.

Listing 1.5

#include<stdio.h>

#include<stdlib.h>

#include<conio.h>

main()

{

int x , y , sum , difference;

int quotient , remainder , product;

x = 10;

y = 3;

sum = x + y;

printf(“The sum of x and y is %d \n”, sum);

difference = x – y;

printf(“The difference of x and y is %d \n”, difference);

quotient = x / y;

printf(“The quotient of x divided by y is %d \n”, quotient);

remainder = x % y;

printf(“The remainder of x divided by y is %d \n”,remainder);

product = x * y;

printf(“The product of x multiplied by y is %d \n”, product);

getch();

}

Notice that in Listing 1.4 we declared the following variables of type integer (int):

int x , y , sum , difference;

int quotient , remainder , product;

x and y are the variables that will hold the values to be manipulated while sum, difference, quotient, remainder, and product will hold the values resulting from the addition, subtraction, division, modulus division, and multiplication operations respectively. The next lines simply assign values to x and y.

x = 10; /* assign the value 3 to x */

y = 3; /* assign the value 2 to y */

To take the sum of the two variables we use the addition (+) operator and assign the result to the variable sum. The following line / expression shows how this is done.

sum = x + y; /* add x and y then assign the result to sum */
Our printf()statement is again used to display the result of the addition operation.

printf(“The sum of x and y is %d \n”, sum);

/* sum has the value of 13 */

In the same manner, the difference, quotient, remainder, and product are computed using the subtraction (-), division (/), modulus division (%), and multiplication (*) operators respectively. The following code segment shows how these operations are done.

difference = x – y; /* difference is assigned the value of x minus y */

quotient = x / y;
/* quotient is assigned the value of x / y */

remainder = x % y; /* remainder is assigned the remainder value of x / y */

product = x * y;
/* product is assigned the value of x multiplied by y */

Note of the difference between the division (/) and the modulus division (%) operation. In the expression quotient = x / y, quotient is assigned the value of 3 which is the actual result of division. However, in the expression remainder = x % y, remainder is assigned the value 1 which is the remainder or the remaining value after division. Also, the modulus division (%) cannot be used on type float or double.

Increment and Decrement operators

A unique feature of C programming language is the ability to provide a short-cut in incrementing and decrementing values. C provides the increment (++) operator to add 1 to a value or variable and the decrement (--) operator to subtract 1 from a value or a variable.

Consider this expression:

x = x + 1;

The expression adds 1 to x and assigns the value to x or itself. This is simply incrementing x by 1. We can concisely write the above expression as:

x++;

Note however that the increment operation in the above expression is in its postfix form (i.e. it is written after the variable). Increment and decrement operators have both a postfix and prefix form. For the increment operator it is called the postincrement and preincrement operator while the decrement has the postdecrement and the predecrement operator. Listing 1.5 and Listing 1.6 illustrates the use of these operators.

Listing 1.6

/* example of increment operation*/

/* illustrate the use of post and pre-increment operation*/

#include<stdio.h>

#include<stdlib.h>

#include<conio.h>

main()

{

int counter;

counter=10;

/* uses the post increment */

printf(“%d \n”,counter++); /* this prints the value 10*/

printf(“%d \n”,counter); /* this prints the value 11 */

counter=10;

/* uses the pre increment */

printf(“%d \n”,++counter); /* this prints the value 11*/

printf(“%d \n”,counter); /* this prints the value 11 */

getch();

}

Listing 1.7

/* example of decrement operation*/

/* illustrate the use of post and pre-decrement operation*/

#include<stdio.h>

#include<stdlib.h>

#include<conio.h>

main()

{

int counter;

counter=10;

/* uses the post decrement */

printf(“%d \n”,counter--); /* this prints the value 10*/

printf(“%d \n”,counter); /* this prints the value 9 */

counter=10;

/* uses the pre decrement */

printf(“%d \n”,--counter); /* this prints the value 9*/

printf(“%d \n”,counter); /* this prints the value 9 */

getch();

}

Relational and Logical Operators

Often we need to compare values or variables with one another. In C, we are able to perform this with the relational operators. Logical operators, on the other hand, are concerned with how these relationships can be connected together using the rules of formal logic.

True or False in C

In our discussion into relational and logical operators, we must be able to understand the concept of true and false. In C, true is any value other than 0 (i.e. values not equal to zero), false on the other hand is 0 (zero). Therefore, expressions that involve relational and logical operators will return either 0 (false) or 1 (true). Table 6 and Table 7 shows the list of relational and logical operators respectively.

Table 6: Relational Operators
	Operator
	Action/Meaning

	>
	Greater than

	>=
	Greater than or equal

	<
	Less than

	<=
	Less than or equal

	==
	Equal

	!=
	Not equal

Table 7:Logical Operators

	Operator
	Action/Meaning

	&&
	AND

	||
	OR

	!
	NOT

Table 8: The truth table for the logical operators AND, OR, NOT is shown below:

	X
	y
	x && y
	x || y
	!x

	0
	0
	0
	0
	1

	0
	1
	0
	1
	1

	1
	0
	0
	1
	0

	1
	1
	1
	1
	0

To illustrate how these operators work, let’s have these examples.

Listing 1.8

/* Relational operators example */

#include<stdio.h>

#include<conio.h>

#include<stdlib.h>

main()

{

int x, num1, num2;

num1 = 10;

num2 = 20;

x = num1 > num2;

printf(“%d \n”, x);

x = num1 < num2;

printf(“%d \n”, x);

x = num1 >= num2;

printf(“%d \n”, x);

x = num1 <= num2;

printf(“%d \n”, x);

x = num1 == num2;

printf(“%d \n”, x);

x = num1 != num2;

printf(“%d \n”, x);

getch();

return(0);

}

Notice that in the above example we have declared three variables x, num1, and num2. The variables num1 and num2 are assigned the values of 10 and 20 respectively as shown in the lines:

num1 = 10;

num2 = 20;

The variable x will hold the value (i.e 1 or 0 corresponding to either true or false) returned by the comparison of num1 and num2. The following lines of code illustrate this.

x = num1 > num2;

printf(“%d \n”, x);

The expression num1 > num2 simply compares the value of the variables and can be evaluated as 10 > 20. This expression is false since 10 can never be greater than 20 and therefore the variable x is assigned the value of 0 which is false in C. The printf() statement simply prints the value of x to the screen. The same principle is applied to the succeeding statements.

Listing 1.9

/* Logical operators example */

#include<stdio.h>

#include<conio.h>

#include<stdlib.h>

main()

{

int x, num1, num2, num3, num4;

num1 = 10;

num2 = 20;

num3 = 1;

num4 = 5;

x = !(num1 > num2);

printf(“%d \n”, x);

x = (num1 < num2) && (num3 >= num4);

printf(“%d \n”, x);

x = (num1 <= num2) || (num3 < num4);

printf(“%d \n”, x);

x = (!((num1 == num2) && (num3 > num4))) || (num4 > num3);

printf(“%d \n”, x);

getch();

return(0);

}

As in our previous discussion we have declared variables as follows:

int x, num1, num2, num3, num4;

and assigned values to some of the variables.

num1 = 10;

num2 = 20;

num3 = 1;

num4 = 5;

Notice how the expressions assigned to x are written. They are expressions that involve the combination of our relational and logical operators. Let us try to evaluate each of them and find out the final value assigned to x. Consider the first expression:

x = !(num1 > num2);

 0 (false)

NOT (0)

x = 1 (true)

In the first expression num1 > num2 is evaluated first which results in 0 or false. However, note of the ! or NOT operator placed before the expression, this will invert the result which yields the result of 1 or true.

 We proceed to the next expression, which is as follows:

In evaluating the second expression, we first consider the two distinct expressions enclosed in parenthesis. The first one, num1 < num2, when evaluated yields 1 or true. On the other hand the second one, num3 >= num4, yields 0 or false. The individual results of these expressions are then ANDed (&&) resulting in 0 or false. This final value is then assigned to x.

The next expression follows the same principle, the individual expressions enclosed in parenthesis are evaluated and their results are ORed (||) resulting in 1 or true.

The final expression is quite complicated than the first three examples. Notice that we both evaluated the first two expressions that are inside the inner most parentheses. The expressions (num1 == num2) and (num3 > num4) are evaluated individually and their results are ANDed (&&) resulting to 0 or false. Next, we move to the next outer parenthesis and notice that we need to NOT (!) the result giving us the reverse value which is 1 or true. Finally, this value is ORed to the result of the last expression which is num4 > num3. The final result 1 or true is then assigned to x.

Bitwise Operators

Bitwise operators are similar to relational and logical operators, however they operate on the individual bits in a byte or word. In C byte or word correspond to the char and int data types. Furthermore, these operators are used to test, set, or shift the bits as can be done in assembly language. The truth table for the bitwise AND, OR, NOT is similar to that shown in Table 8, the truth table for the bitwise exclusive OR is shown below.

Table 9: Exclusive OR (XOR)

	x
	Y
	x ^ y

	0
	0
	0

	0
	1
	1

	1
	0
	1

	1
	1
	0

Table 10: Bitwise Operators

	Operator
	Action/Meaning

	&
	AND

	|
	OR

	^
	Exclusive OR (XOR)

	~
	One’s complement (NOT)

	>>
	Shift right

	<<
	Shift left

Consider the program example:

Listing 1.10

#include<stdio.h>

#include<conio.h>

main()

{

int x, y, z; /* variable declaration */

x = 3;

/* assign 3 to x */

y = 5;

/* assign 5 to y */

z = x ^ y;
/* z is assigned the value of x XOR y */

printf(“%d \n”, z);

getch();

}

In Listing 1.10, the expression z = x ^ y performs the bit-by-bit XOR between the values of x and y. The XOR operation is performed as follows:

	variable
	value
	value in binary

	x
	3
	0 1 1

	y
	5
	1 0 1

	
	
	1 1 0

The values of x and y (which are in their decimal equivalent) are converted to their binary values. Each of the bits is then XORed resulting to the value 1 1 0 (binary) or 6 (decimal). The value is then assigned to z and displayed on the screen as the value 6.

The same principle works for the bitwise AND and OR. The bitwise NOT (~) on the other hand reverses that state or value of each bit. This means that all 0’s in the binary equivalent of a value is set to 1, and all 1’s are set to 0.

Example:

5 (decimal) =
1 0 1 (binary)

0 1 0 (value after NOT (~) operation)

The shift operators have the following form:

(shift right)
variable >> number of bit positions

(shift left)
variable << number of bit positions

Consider a variable x with a value of 5, let’s perform the shift operations to illustrate how the bits move.

x = 5;

= 101 (binary)

	Operation
	Value in binary
	Value in decimal

	x = x << 1
	0 1 0
	2

	x = x << 1
	1 0 0
	4

	x = x >> 2
	0 0 1
	1

	x = x << 1
	0 1 0
	2

	#include<stdio.h>

	/* this code prints “Hello World” on the screen */

	main()

	{

		printf(“Hello World”);

		return(0);

	}

Table 1

Table 2

Table 3

Table 4

Table 5

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

XOR

= 6 = z

PAGE
17
roelmr/files/c

_1084009404

_1084010231

_1084008609

