DataStructure - ARRAY

Arrays and Pointers

Arrays

An array is a fixed-size collection of data items (elements) having the same data type. The data items are stored in consecutive memory locations and can be accessed by a relative address called an index or subscript. Much like variables, arrays need to be declared prior to use, so that it can be allocated memory space by the compiler.

Single-dimensional Array

The general form / syntax in declaring an array is:

type_specifier identifier[ArraySize];

As an example, to declare an array of 10 integers we write:

int num[10];

The identifier (in fact, it is also called array name) num is now declared as an array of 10 elements having int (integer) as its type. The square brackets ([]) enclosing the ArraySize is called the subscripting array reference operator. The value of the ArraySize specifies the size or the number of elements of the array being declared.

Note however that in C, the first element of the array has an index of 0 (zero) and the last element has an index equal to the ArraySise-1. In our example, to access the first element we write num[0], the last element, on the other hand can be accessed by num[9]. Below is a graphical representation of the example.

int num

 index [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

We may also declare and at the same time initialize a single-dimensional array by explicitly enumerating the values of the elements. To place the values 1 – 10 the array num we write:

int num[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

Using this declaration and initialization, the array num will contain the values enclosed in the curly brackets. Therefore num[0] or the first element will have the value of 1, num[1] will have the value of 2, and so on. Naturally, num[9] or the last element will contain the value of 10. A semi-colon (;) terminates the enumeration of the values.

Another approach of initializing single-dimensional arrays is by using the unsized array initialization. In this approach, no ArraySize is specified however the values to be placed in the array’s elements are enumerated. Again, to place the values 1 to 10 in the array num, we may write:

int num[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

Obviously, the value of num[0] is 1 and the value of num[9] is 10.

Putting data into single-dimensional arrays

Aside from the initializing the arrays to contain values, we can place data into the elements of the array by directly providing the data (or constants) for each item. Using again the example:

int num[10];

we can write the following code to place data into the elements.

num[0] = 10;

num[1] = 20;

num[2] = 30;

num[3] = 40;

num[4] = 50;

num[5] = 60;

num[6] = 70;

num[7] = 80;

num[8] = 85;

num[9] = 95;

However, we can also use the looping statements to interactively place data into the elements of the array. Listing 4.1 uses the for loop to place the data (numbers) inputted by the user to each element of the array.

Listing 4.1

#include<stdio.h>

#include<conio.h>

main()

{

int num[10];

int x;

clrscr(); /*clear the screen */

for(x=0;x<=9;x++){

printf(“enter a number >> “);

scanf(“%d”,&num[x]);

}

getch();

return(0);

}

In the example, we declared an integer array num having 10 elements and x, which will serve as a counter and index for our loop. Let’s study the main part of our program shown below.

for(x=0 ; x<=9 ; x++){

printf(“enter a number >> “);

scanf(“%d”,&num[x]);

}

The for loop initializes x to 0 (x=0) and sets the condition x<=9. Since the condition is true when x=0 the statements inside the loop is executed. First, the printf() is performed displaying the message “enter a number >> ”. After the first statement, the scanf() is executed and waits for the user input (naturally, the input required is an integer or number because of the %d format specifier). For example the user keys in the value of 5, notice that num[x] receives the value inputted. Since x is equal to 0 (x=0) then num[x] therefore simply refers to num[0]. When the next iteration of the loop occurs, the value of x is incremented (x now is equal to 1). Given another input, the value now is again received by num[x], however x now is 1 and therefore num[x] is simply num[1]. The same principle is applied for every iteration of the loop until the condition is evaluated as false which terminates the loop.

To access the all data found in the elements of an array, we again make use of the looping statements to access each of the elements. Listing 4.2 modifies the previous example to include a loop statement that outputs the items in the array.

Listing 4.2

#include<stdio.h>

#include<conio.h>

main()

{

int num[10];

int x;

clrscr(); /*clear the screen */

/* input data into the elements of the array */

for(x=0;x<=9;x++){

printf(“enter a number >> “);

scanf(“%d”,&num[x]);

}

/* output the data elements in the array */

printf(“\nThe array contains\n”);

x=0; /* initialize x */

do{

printf(“element num[%d] = %d\n”, x, num[x]);

x++;

}while(x<=9);

getch();

return(0);

}

In the example we used the do/while loop statement to output each element in the array num. The following statements sequentially outputs the data in the array:

x=0; /* initialize x */

do{

printf(“element num[%d] = %d\n”, x, num[x]);

x++;

}while(x<=9);
To enable us to access the first element of the array, we have initialized x, which serves as our index counter, to 0 (zero). Thus, when the printf() is executed the num[%d] part of the message prints num[0] and the second %d format specifier prints the data or number at num[x] or, since x=0, num[0]. Incrementing x (x++;) allows us to move to the next element of the array which is num[1]. The elements of the array is printed until the final index is reached or until the condition x<=9 is evaluated as false (0).

Strings

The C programming language does not provide for a string data type. In C, a string is an array of characters (obviously, the data type of this array is char) of any length that is terminated by a null terminator. The null terminator (‘\0’) signifies the end of the sequence of the characters. It is therefore important that when declaring an array of character or a string, we make room for the null terminator. For example, to declare a five(5) character string, we write:

char my_string[6];

Note that instead of placing 5 as the ArraySize of the character, we added 1 to the actual size of the string.

Character array or strings may also be declared and initialized in a manner similar to non-character array declarations. To assign a string value “Great” to my_string, we may write:

char my_string[6] = “Great”;

This is similar to writing:

char my_string[6] = { ‘G’, ‘r’, ‘e’, ‘a’, ‘t’, ‘\0’ };

We may also, use the unsized array declaration, we can therefore write:

char my_string[] = “Great”;

In this appraoch, the null terminator is automatically appended or added at the end of the string “Great”.
Manipulating strings

C provides a rich variety of functions that manipulate strings. All string manipulation function uses the string.h header file. Some of the commonly used functions are strlen(), strcpy(), and strrev().

Here’s an example to illustrate the use of these functions.

Listing 4.3

#include<stdio.h>

#include<conio.h>

#include<string.h>

main()

{

char str1[6], str2[6];

int x;

clrscr();

printf(“enter a string of 5 characters >> “);

scanf(“%s”,&str1);

x = strlen(str1);

strcpy(str2, strrev(str1));

printf(“str1 is %s\n”, str1);

printf(“the size of str1 is %d\n”, x);

printf(“the reverse of str1 is %s\n”, str2);

getch();

return(0);

}

In this example, we have declare two strings: str1 and str2 both having the same dimension or size. Note of how we accepted the value for the first string.

scanf(“%s”,&str1);

Using the %s format specifier, we can input a series of characters and assign them to a string variable. In the case of our program, str1 receives the characters inputted by a user. The next line of code uses the strlen() function.

x = strlen(str1);

The strlen() function returns the number or count of characters of a particular string variable. Since we are interested in the number of characters of the str1, we pass str1 as a parameter to the function. The null terminator is not included in the count. The result returned by the strlen() function is then assigned to the variable x.

The next line uses the strcpy() function to copy the string value of a string variable to another string variable. The syntax for strcpy()is:

strcopy(destination_string, source_string);

In the example given we have:

strcpy(str2, strrev(str1));
The source_string in this statement would be strrev(str1) and the destination_string would be str2. Note that we made use of the strrev() function in the source_string. The strrev() function returns the reverse sequence of the string value. In this example, the string value of str1 is reversed and this reversed value is then copied to the destination_string str2. To illustrate further, for example we have these lines of code.

char str1[6] = “great”; /* str1 has a value ‘great’*/

char str2[6], str3[6];

str3=strrev(str1); /*str1 is reversed therefore str3 = ’taerg’

strcpy(str2, str3); /* the value of str3 is place into str2 */

 /* therefore str2 = ‘taerg’*/

Since strings are arrays of characters, we can still access each individual element in the string similar to the manner we used in referencing non-character arrays. In Listing 4.4, shows how each element is accessed and displayed on the screen.

Listing 4.4

#include<stdio.h>

#include<conio.h>

#include<string.h>

main()

{

char str1[6];

int x;

clrscr();

printf(“enter a string of 5 characters >> “);

gets(str1);

for(x=0 ; x<=strlen(str1)-1 ; x++){

printf(“str1[%d] = %c\n”, x, str1[x]);

}

getch();

return(0);

}

Again, notice how the program accepts the string input. Similar to the scanf() function, the gets() function (uses the stdio.h header file) is used here to accept the input for the string str1.

The for loop is used here to gain access to each individual character of the character array or string. The for loop initializes x to zero (0) and sets the condition to x<=strlen(str1)-1. For example we inputted the string “Great” for str1 then strlen(str1) would return a value of 5. Considering the condition x<=strlen(str1)-1 we can interpret it simply as x<=5-1 or x<=4 where 4 would correspond to the last index value or address for the string “Great”. Since, we have initialized x, which serves as our index counter, to 0 (zero) we can now access the first element of the string str1. Thus, when the printf() is executed the str1[%d] part of the message prints str1[0]. The %C format specifier prints the data or character at str1[x] or, since x=0, str1[0] (that would be the character ‘G’). Incrementing x (x++;) allows us to move to the next element of the array which is str1[1]. The elements of the array is printed until the final index is reached or until the condition x<=9 is evaluated as false (0).

Two-dimensional arrays

A two-dimensional array is an array of single-dimensional arrays. The general form or syntax in declaring a two-dimensional array is:

type_specifier array_name[dimension_size1][dimension_size2];

Therefore, if we are to declare an integer array num2 with the dimensions 3 and 5, we write:

int num2[3][5];

Conceptually, we can illustrate a two dimensional array using a matrix such that dimension_size1 would correspond to the number of rows and dimension_size2 would correspond to the number of columns. Hence, in our declaration of the array num2, the dimension 3 would be the number of rows and 5 would be the number of columns. The declaration can be graphically illustrated as:

int num2[3][5];

To place data into the elements of the array, we may initialize the array to contain the item that we enumerate. To place the numbers 1 to 15 in the array num2, we write:

int num2[3][5] = {

{1, 2, 3, 4, 5},

{5, 7, 8, 9, 10},

{11, 12, 13, 14, 15} };

or using the unsized array initialization, we may write:

int num2[][5] = {

{1, 2, 3, 4, 5},

{5, 7, 8, 9, 10},

{11, 12, 13, 14, 15} };

The contents now of the array num2 would be:

We can reference or access the items or data of the elements of array num2 by simply specifying the row and column (dimension_size1 and dimension_size2) position for that data. So, to access the item (the number 14) at row 2, column 3, we write:

num2[2][3];

Putting data into two-dimensional arrays

Similar to single-dimensional arrays we can explicitly assign values to each element or to interactively place items into each element using loop statements. To provide values to each of the elements in a two-dimensional array, consider this example:

Listing 4.5

#include<stdio.h>

#include<conio.h>

main()

{

int num2[3][5];

clrscr();

num2[0][0] = 1;

num2[0][1] = 2;

num2[0][2] = 3;

num2[0][3] = 4;

num2[0][4] = 5;

Listing 4.5 continued

num2[1][0] = 6;

num2[1][1] = 7;

num2[1][2] = 8;

num2[1][3] = 9;

num2[1][4] = 10;

num2[2][0] = 11;

num2[2][1] = 12;

num2[2][2] = 13;

num2[2][3] = 14;

num2[2][4] = 15;

getch();

return(0);

}

Similar to the initialization that we did previously, we place the values 1 to 15 into each of the elements of array num2. This time however, we are assigning values to each element in the array num2 independently, that is we specify the position (row and column) in the array and assign a value to it.

Using looping statements, on the other hand allow use to interactively place values into the elements of the array. Listing 4.6 shows how each user input is placed into the elements of array num2.

Listing 4.6

#include<stdio.h>

#include<conio.h>

main()

{

int x, y, num2[3][5];

clrscr();

printf(“Enter values\n”);

for(x=0; x<3; x++){

for(y=0; y<5 ;y++){

printf(“Value >> “);

scanf(“%d”,&num2[x][y]);

{

}

getch();

return(0);

}

In the program presented, we made use of two for loop statements to allow our program to place data into the elements of the two-dimensional array. The first for loop

for(x=0; x<3; x++)

allows the program to access the rows of the array while the second for loop

for(y=0; y<5 ;y++)

allows the program to access the column elements of the array. The variables x and y serve as counters that would enable the program to access each individual row and column. Let’s consider just the main part of the program

for(x=0; x<3; x++){

for(y=0; y<5 ;y++){

printf(“Value >> “);

scanf(“%d”,&num2[x][y]);

{

}

In the first for loop, we have initialize x to zero (0) (remember that x is the counter for the row positions) and set the condition where x should be less that 3 or the number of rows. Since x=0, then the condition is evaluated as true executing the statements inside the first for loop. Inside the first for loop is another for loop (let’s call it the second for loop), which sets or initializes y to zero (0) and set the condition to y<5 (again, y is our column counter). Since y=0, then the condition y<5 is evaluated as true executing the statements inside the second for loop statement. Let us analyze the scanf() function inside the second for loop. The integer value accepted by the scanf() function is place in the variable num2[x][y] or substituting the values of x and y (which are both zero(0)), it simply means that we are to place the inputted value in num2[0][0]. The second for loop is executed until the condition y<5 is evaluated as false and in each iteration of the loop y is incremented by 1. Therefore, with each iteration of the second for loop we place the values inputted into the elements num2[0][1], num2[0][2], num2[0][3], and num2[0][4] completing the elements for the first row. When the second for loop terminates, the first for loop increments the value of x and test the condition x<3. If evaluated as true the second for loop is again executed thereby allowing inputs for the elements num2[1][0], num2[1][1], num2[1][2], num2[1][3], and num2[1][4] or simply the second row of the matrix. The data for last row of the array num2 is inputted when the second for loop statement is executed for the third time.

To individually access the data in the elements of a two-dimensional array, we can still used looping statements. Listing 4.7 illustrates the concept

Listing 4.7

#include<stdio.h>

#include<conio.h>

main()

{

int x, y, num2[3][5];

clrscr();

printf(“Enter values\n”);

/* inputs data for each element */

for(x=0; x<3; x++){

for(y=0; y<5 ;y++){

printf(“Value >> “);

scanf(“%d”,&num2[x][y]);

{

}

printf(“The values are\n”);

/* outputs the data in each element */

for(x=0; x<3; x++){

for(y=0; y<5 ;y++){

 printf(“num2[%d][%d] =%d >> \n”,x ,y, num2[x][y]);

{

}

getch();

return(0);

}

?

?

?

?

?

?

?

?

?

?

column

dimension_size2 (column)

row

[2]

[4]

[3]

[0]

[1]

?

?

?

?

?

[0]

[1]

?

?

?

?

?

dimension_size1 (row)

[2]

?

?

?

?

?

[2]

[4]

[3]

[0]

[1]

[0]

5

3

2

1

4

[1]

9

8

7

6

10

[2]

15

13

12

11

14

PAGE
1
roelmr/files/c

